
 69

constraint programming, decision support, scheduling

 Paweł SITEK, Jarosław WIKAREK∗

IMPLEMENTATION OF DECLARATIVE FRAMEWORK
FOR DECISION SUPPORT SYSTEM IN SCHEDULING

PROBLEMS

Abstract

Scheduling problems appear frequently at different levels of decisions. They are
usually characterized by many types of constraints, which make them unstructured and
difficult to solve (NP-complete). Traditional mathematical programming approaches are
deficient because their representation of constraints is artificial (using 0-1 variables).
Unlike traditional approaches, constraint logic programming (CLP) provides for a
natural representation of heterogeneous constraints. In CLP we state the problem
requirements by constraints; we do not need to specify how to meet these requirements. In
this paper we propose a declarative framework for decision support system (DSS) for
constrained search problems implemented by CLP and relational SQL database. We
illustrate this concept by the implementation of a DSS for scheduling problems with
external resources in different production organization environments.

1. INTRODUCTION

Today's highly competitive business environment makes it an absolute requirement on behalf
of the managers to continuously make the best decisions in the shortest possible time. Learning
from mistakes has left its place to one strike and you're out' reality. That is, there is no room for
mistake in making decisions in this global environment. Success depends on quickly allocating
the organizational resources towards meeting the actual needs and wants of the customer.
Decision problems involve various numeric and non-numeric constraints, some of which are
conflicting with each other. Occasionally, decision-makers do not have complete information
on the situation. Thus they perform ‘what-if’ and goal-seeking analyses involving constraints.
In order to succeed in such an unforgiving environment, managers and decision makers need
integrated 'intelligent' decision support systems (DSS) that are capable of using a wide variety
of models along with data and information resources available to them at various internal and
external repositories. An important aspect of decision support systems studies is to develop
techniques for automatic or interactive decision analysis in a complex real-world situation.
In this paper we present the use of constraint logic programming as a tool for such decision
support systems in constrained search problems, focusing on the model representation and
analyses. Constraint Logic Programming (CLP) is a declarative modelling and procedural

∗ dr inż, dr inż,, Technical University of Kielce, Control and Management Systems Section,
1000-PP 7, Kielce, Poland, E-MAIL: sitek@tu.kielce.pl, j.wikarek@tu.kielce.pl

 70

programming environment that integrates qualitative /heuristic knowledge representation of
logic and quantitative/algorithmic reasoning into single paradigm.
The original contribution of our approach consists of a declarative framework for scheduling
problems, developed within the constraint logic paradigm together with relational SQL
database, and the development of a constraint logic solver for scheduling problems with
external resources in different production organization environments.

2. DECLARATIVE PROGRAMMING AND ENVIRONMENTS – SQL,

CLP

Declarative programming is a term with two distinct meanings, both of which are in current
use. According to one definition, a program is "declarative" if it describes what something is
like, rather than how to create it. For example, HTML, XML web pages are declarative because
they describe what the page should contain — title, text, images — but not how to actually
display the page on a computer screen. This is a different approach from imperative
programming languages such as Pascal, C, and Java, which require the programmer to specify
an algorithm to be run. In short, imperative programs explicitly specify an algorithm to achieve
a goal, while declarative programs explicitly specify the goal and leave the implementation of
the algorithm to the support software (for example, an SQL select statement specifies the
properties of the data to be extracted from a database, not the process of extracting the data).
According to a different definition, a program is "declarative" if it is written in a purely
functional programming language, logic programming language, or constraint programming
language. The phrase "declarative language" is sometimes used to describe all such
programming languages as a group, and to contrast them against imperative languages.
These two definitions overlap somewhat. In particular, constraint programming and, to a lesser
degree, logic programming, focus on describing the properties of the desired solution (the
what), leaving unspecified the actual algorithm that should be used to find that solution (the
how). However, most logic and constraint languages are able to describe algorithms and
implementation details, so they are not strictly declarative by the first definition.
Constraint Logic Programming as a declarative modeling and procedural programming
environment is increasingly realized as an effective tool for decision support systems [4, 5, 6].
CLP is suitable for Decision Support Systems (DSS) because [1, 5]:

• CLP is a very good tool for the development of knowledge base that has expertise and
experience represented in terms of logic, rules and constraints. This tool allows the
knowledge base to be built in an incremental and accumulating way (it is suitable for
ill-structured or semi-structured decision analysis problems).

• Constraints naturally represent decisions and their inter-dependencies. Decision
choices are explicitly modeled as the domains of constraint variables.

• CLP can serve as a good integrative environment for the decision analysis that has
different kinds of model.

• Decision analysis requires a number of computational facilities which this tool can
provide.

 71

3 CONCEPT OF DSS BASED ON DECLARATIVE PROGRAMMING
FOR SCHEDULING PROBLEMS

The presented in (2) advantages and possibilities of declarative programming environment for
decision support make it interesting for decision support in SMEs. The decision support system
for production scheduling has been presented as an example of implementation of DSS with
declarative programming. Building decision support system for scheduling, covering a variety
of production organization forms, such as job-shop, flow-shop, project, multi-project etc., is
especially interesting. The following assumptions were adopted in order to design the
presented scheduling processes of the decision support system (see Fig.1):

• The system should possess data structures in relational model that make its use
possible in different production organization environments

• The system should make it possible to schedule the whole set of tasks simultaneously,
and after a suitable schedule has been found, it should be possible to add a new set of
tasks later, and to find a suitable schedule for both sets without the necessity to change
initial schedules.

• The system should regard:
o Additional (external) resource types apart from machines, e.g. people, tools, etc.
o Temporary inaccessibility of all resource types.
o The processing times dependent on the starting time of jobs, allocated additional

resources, etc.
• The decisions of the systems are the answers to appropriate questions formed as CLP

predicates.

The range of the decisions made by the system depends on data structures and asked questions.
Thus, the system is very flexible as it is possible to ask all kinds of questions (write all kinds of
predicates). In this version of DSS the questions which can be asked are the following:

• What is the minimum number of people necessary for assigned makespan and proper
schedule? (predicate opc_d(L,C)).

• What is the minimum makespan at the assigned number of people and proper schedule?
(predicate opc_g(L,C)).

• Is it possible to order new tasks (both orders and projects) for the determined
makespan? (predicate opc_s(L,C)).

• What is minimum makespan at the assigned number of people for new tasks? (predicate
opcd_g(L,C)).

• What is the minimum number of people necessary for assigned makespan for new
tasks? (without changing the schedule of basic set of tasks) (predicate opcd_d(L,C)).

• Is it possible to order tasks for the determined makespan ? (predicate opcd_s(L,C)).
• Is it possible to order tasks for the determined makespan where the processing time of

job depends on allocated number of people? (predicate opcd_s1(L,C)).

C=Cmax-makespan, L- manpower

 72

These questions are just examples of questions that the present system can be asked. New
questions are new predicates that need to be created in CLP environment. Two types of
questions are asked in the system (Fig.1):

• About the existence of the solution (eg., is it possible to carry out a new task in the
particular time?, etc.)

• About a particular kind of the solution: find a suitable schedule fulfilling the
performance index, find the minimum scheduling length-makespan, find the minimum
number of people to carry out the task, etc.

Fig.1 Concept of DSS based on declarative programming for scheduling problems

 73

4 IMPLEMENTATION OF DSS WITH DELCARATIVE
PROGRAMMING FRAMEWORK

We propose ECLiPSe [9] as a platform to decision support in scheduling problems. ECLiPSe is
a software system - based on the CLP paradigm - for the development and deployment of
constraint programming applications. It is also ideal for developing aspects of combinatorial
problem solving, e.g. problem modeling, constraint programming, mathematical programming,
and search techniques. Its wide scope makes it a good tool for research into hybrid problem
solving methods. ECLiPSe comprises several constraint solver libraries, a high-level modeling
and control language, interfaces to third-party solvers, an integrated development environment
and interfaces for embedding into host environment. The ECLiPSe programming language is
largely backward-compatible with Prolog and supports different dialects. It provides, however,
an extended set of basic data types (byte strings, unlimited precision integer and rational
numbers, double precision floats and double precision intervals).
Data structures were designed in such a way that they could be easily used to decision
problems in a variety of scheduling environments, which is job-shop, flow-shop, project or
multi-project. The obtained flexibility resulted from the use of relational data model. The
implementation framework is shown in fig.2.

Fig.2 Implementation framework of DSS

 74

The novelty of the proposed approach is in the integration of the CLP methodology with a
commonly used relational database model. The scripts started by a CLP engine are generated
automatically on the basis of data in the database (numerical values and CLP predicates). The
proposed solution makes it possible to easily develop the system (developing and saving in the
database the content of additional CLP predicates) and to integrate it with other computer
systems based on a relational SQL database. Description of the schema of DSS database has
been shown in table 1.

Fig.3 Schema of database of DSS for scheduling problems (Entity Relationship Diagram).

 75

Table 1 Description of the database of DSS
Table_name Table_description Column Column_desc

id_t project_type_id Project_types the types of possible
projects for realization type_name project_type_name

id_f project_id
name project_name

Projects the specification of
separate projects in
enterprises id_t project_type_id

id_c_f function_id
name function_name

Processing_times the list of functions of time
calculation

body function_body
id_o_t operation_type_id
name operation_type_name

Opertaion_types the list of operation types

id_c_f function_id
id_f project_id
id_o operation_id
id_o_t operation_type_id
name operation_name
t_z release time
t_k critical time

Operations the list of operations to be
realized

start start time
id_f project_id
id_o_p operation_id
id_o_d operation_id

Precedence defines the sequence of the
realized operations

time time between operations
id_f project_id
id_m machine_id

Machines the specification of
available machines for the
operation realization name machine_name

id_f project_id
id_o operation_id
id_m machine_id

Allocations the allocation of operation
to machines

id_c_p parameters_of_function
id_f project_id
id_z resource_id
name resource_name

Resources the specification of
renewable/external
resources

limitation resource_limitation
id_f project_id
id_o operation_id
id_z resource_id
p_min min number of allocated resource
p_max max number of allocated resource
id_c_p parameters_of_function

Allocations_R the allocation of
renewable/external/additio
nal resources to operations

number_r the number of allocated resource
id_f project_id
id_k period_number

Calendar the specification of
planning/scheduling
periods date starting_date

id_f project_id
id_m machine_id
id_k_p number of initial period

Inaccessibility_
of_machines

the specification of
inaccessibility of machines

id_k_k number of final period

 76

Table_name Table_description Column Column_desc
id_f project_id
id_z resource_id
id_k_p number of initial period
id_k_k number of final period

Inaccessibility_
of_resources

the specification of
limitation/inaccessibility of
machines

accessibility number of accessible resources
id_l line generation type
type type description

Type_of_lines

PHP_function function (in script language)
id_f project_id
step Number of generation step
id_l line generation type

Gener describes the process of
model generation for
Eclipse

line line to be made
id_f project_id
name name of predicate

Eclipse_predicates the codes for the ready
predicates of Eclipse

body code of predicate

5 ILLUSTRATIVE EXAMPLES

After the complete implementation of the DSS into ECLiPSe and SQL environments,
computation experiments were carried out. The job-shop scheduling problem with manpower
resources (Example 1) and project (Example 2) were considered.
The proposed illustrative examples cover a wide range of scheduling problems encountered in the SMEs.
The examples are selected in such a way that they how two extremely different forms of production
organization; repetitive production in the job-shop environment and the unique production including the
project. The presented methodology makes solving scheduling problems possible also in indirect
methods of production organization. Moreover, the examples are larded with problems of constrained
resources (e.g. manpower, specialized machines, etc.) and the dependence of particular jobs processing
time on the amount of the allocated resources, for instance.

5.1 Example 1 - The job shop scheduling with manpower resources

In the classical scheduling theory job processing times are constant (Example_1a). However,
there are many situations where processing time of a job depends on the starting time of the job
in queue or the amount of allocated additional resources (e.g. people) (Example_1b) etc. The
parameters of computational examples are presented in table 1. There are 5 jobs, each consist
of 6 operations. The job data structures are shown in Fig. 4.

Fig.4 Description of task (job) data structure for job-shop computational example

(Example_1a)

 77

Table 2. Parameters of computational examples (Example_1

j∈{A,B,C,D,E}, o∈{1,2,3,4,5,6}, s∈{1,2,3,4,5,6}
j=A[(1,2,4), (2,4,2), (3,4,1), (4,2,1), (5,2,1), (6,3,4)]
j=B[(2,2,2), (3,3,3), (4,4,4), (1,2,3), (5,6,1), (6,3,2)]
j=C[(5,2,3), (4,2,1), (3,3,4), (2,4,3), (6,2,4), (1,4,4)]
j=D[(2,4,3), (3,2,6), (4,3,2), (5,2,3), (6,4,2), (1,4,4)]
j=E[(1,2,3), (3,4,6), (5,4,2), (6,4,2), (4,3,2), (2,2,2)]

The resource occupancy can be interpreted as a job with the fixed start times for all their
operations and fixed manpower requirements. For the computational example the following
questions (write following predicates) were asked (see section 3):

• opc_g(_,_) (see fig. 5, 6).
• opc_g(8,_) (see fig. 7,8).
• opc_d(_,35) (see fig. 9)
• opc_s(10,30) (see fig. 10).
• opc_s(10,28) (see fig. 11).

Computation experiments were started on the computer PIV 1,4 GHz, RAM 512 under
Windows XP.

Fig. 5 Answer to the question implemented in predicate opc_g(_,_)–result C*

max=28, L=14
(Example_1)

 78

Fig. 6 Gantt’s chart for decision from fig.5 (Example_1)

 79

Fig. 7 Answer to the question implemented in predicate opc_g(8,_)–result C*

max=35,L=8
(Example_1)

Fig. 8 Gantt’s chart for decision from fig.7 (Example_1)

 80

Fig. 9 Answer to the question implemented in predicate opc_d(_,35)–result, Lmin=8
(Example_1)

Fig. 10 Answer to the question implemented in predicate opc_s(10,30)–result Yes (Example_1)

Fig. 11 Answer to the question implemented in predicate opc_s(10,28)–result No (Example_1)

 81

5.2 Example 2 –-project

A typical modern-day project has a variety of complications not considered in the original
PERT/CPM methodology. There are three particular situations:

• You may be able to accelerate the completion of a project by speeding up or
“crashing” some of the activities in the project.

• Your ability to finish a project quickly is hindered by limited resources (e.g., two
activities that might otherwise be done simultaneously, in fact have to be done
sequentially because they both require a crane and you have only one crane on site).

• How long it takes to do each activity is a random variable.

In table 3, we list the activities involved in a simple, but nontrivial, project (building a house,
building a bridge, etc.) An activity/operation cannot be started until all of its predecessors are
finished. The network activity for this project has been shown in fig.12. To solve this example
the DSS with declarative programming (section 4) was used. In this example the processing
times of activities are constant (Example_2a, Table 3) or depend on allocated manpower
resource (Example_2b, Table 5). The numeric results of these experiments have been shown in
table 4 (Example_2a) and table 6 (Example_2b).

Table 3 Parameters of Example_2a

activity/operation processing time required predecessor manpower
A 2 - 4
B 3 A 8
C 4 B 4
D 3 B 3
E 2 D 3
F 3 C, E 6
G 4 F 8
H 5 G 4
I 3 G 6
J 2 H, I 8

Fig. 12 Activity network (Example_2a, Example_2b)

For the computational example (Example_2a) the following questions (write following
predicates) were asked (see section 3):

• opc_g(_,_) (see fig.13)
• opc_d(_,24) (see fig. 14)
• opc_g(8,_) (see fig.15)

 82

Fig. 13 Answer to the question implemented in predicate opc_g(_,_)–result the shortest time to

complete projec=24 (Example_2a)

Fig. 14 Answer to the question implemented in predicate opc_d(_,24)–result, Lmin=10

(Example_2a)

Fig. 15 Answer to the question implemented in predicate opc_g(8,_)–result the shortest time to

complete project=27 (Example_2a)

 83

Table 4 Results of Example_2a

activity/operation Answer to opc_g(_,_)
Start time

Answer to opc_d(_,24)
Start time

Answer to opc_g(8,_)
Start time

A 0 0 0
B 2 2 2
C 5 5 5
D 5 5 5
E 8 8 8
F 10 10 10
G 13 13 13
H 17 17 20
I 17 17 17
J 22 22 25

Table 5 Parameters of Example_2b

Additional
manpower/shortening PT

activity/operation required
predecessor

manpower processing
time-PT

0 1 2 3
A - 4 2 0 1 1 1
B A 8 3 0 0 1 2
C B 4 4 0 1 2 3
D B 3 3 0 1 1 2
E D 3 2 0 1 1 1
F C, E 6 3 0 1 2 2
G F 8 4 0 1 1 2
H G 4 5 0 1 2 3
I G 6 3 0 1 1 2
J H, I 8 2 0 1 1 1

For the computational example (Example_2b) the following questions (write following
predicates) were asked (see section 4):

• opc_g(_,_) (see fig.16)
• opc_g(10,_) (see fig.17)

 84

Fig. 16 Answer to the question implemented in predicate opc_g(_,_)–result the shortest time to

complete project =10 (Example_2b)

Fig. 17 Answer to the question implemented in predicate opc_g(10,_)–result the shortest time

to complete project=14 (Example_2b)

 85

Table 6 Results of Example_2b

Answer to opc_g(_,_) Answer to opc_g(10,_) activity/operation
processing

time
manpower start

time
processing

time
manpower start

time
A 1 5 0 1 5 0
B 1 11 1 2 10 1
C 2 6 2 3 5 3
D 1 6 2 2 4 3
E 1 4 3 1 4 5
F 1 8 4 1 8 6
G 2 11 5 3 9 7
H 2 7 7 2 7 11
I 2 7 7 1 9 10
J 1 9 9 1 9 13

6. CONCLUSIONS

The proposed approach can be considered to be a contribution to scheduling and especially to
scheduling problems with additional/external resources. In many enterprises this kind of
resources can have influence on production and delivery schedules. That is especially
important in the context of cheap, fast and user friendly decision support in SMEs (Small and
Medium Sized Enterprises). Great flexibility of the presented approach and practically
unlimited possibilities of asking questions through creating predicates cannot be overestimated.
What is more, the whole decision system can be built in one modeling and programming
declarative environment, which lowers costs and adds to the solution effectiveness. The CLP-
tools fulfill the need of intelligent production management structures and can be based
successfully in cases of scheduling problems with external resources. The proposed approach
seems to be a viable alternative option for supporting quite a number of decision making
processes. The originality of our approach, which achieves the transition from custom
imperative programming to declarative programming in a field of scheduling problems,
consists in the data structure and CLP implementation. The presented framework can be
implemented in many other constrained search problems apart scheduling like planning,
routing, placement etc.

REFERENCES
1. LIAO S.Y., WANG H.Q., LIAO L.J.: An extended formalism to constraint logic

programming for decision analysis, Knowledge-based Systems 15, 2002 , pp 189-202.
2. PEABODY G.: Interpath connects Customer to SAP Applications via World-class

Communications, Data Center and Support Infrastructure Aberdeen Group 2000.
3. LACITY M.C., HIRSCHHEIM L, WILLCOCKS: Realizing outsourcing expectations,

Information Systems Management 11(4), 1994, pp 7-18.

 86

4. BISDORFF R., LAURENT S. “Industrial linear optimization problem solved by
constraint logic programming”, European Journal of Operational Research 84 (1), 1995,
pp 82-95.

5. LAMMA E., MELLO P., MILANO M. “A distributed constrained-based scheduler”,
Artificial Intelligence in Engineering 11,1997, pp 91-105.

6. LEE H.G., LEE G. Yu., “Constraint logic programming for qualitative and quantitative
constraint satisfaction problems”, Decision Support Systems 16 (1), 1996, pp 67-83.

7. RYU U. Young .”Constraint logic programming framework for integrated decision
supports” Decision Support Systems 22, 1998, pp 155-170.

8. BENNETT Ch. TIMBRELL G.: Application Services Providers: Will They Succeed ?,
Information Systems Frontiers, pp 195 – 211, Kluwer Academic Publishers, 2000.

9. http://www.cs.kuleuven.ac.be/

